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An autonomous/adaptive  interplanetary navigation architecture em- 
ploying neural networks and genetic algorithms is being developed 
that will alert navigators when a shift from optimal to suboptimal fil- 
tering occurs and assist in  modifying the filter parameters to resume 
optimal tracking. This  architecture consists of a near real-time au- 
tonomous monitoring component and an offline adaptive component. 
The autonomous component analyzes operational filter residuals to 
detect the transition to suboptimal filtering and to identify the  nature 
of the mismodeling.  Once identified, the adaptive component then 
modifies the necessary model parameters to bring the filter back into 
optimal  operation.  The autonomous identification of mismodeling 
employs a hierarchical mixture-of-experts model where the experts 
are extended Kalman filters. The filters in the hierarchy are orga- 
nized into banks and regulated by  two  levels of single  layer neural 
networks called gating networks. The architecture of the overall nav- 
igation approach is introduced and  the  operation of the autonomous 
monitoring component is demonstrated. Two experiments will  show 
the autonomous navigation component can successfully identify dis- 
crete model changes such as impulsive maneuvers and continuous 
model changes  such as solar radiation mismodeling. A third ex- 
periment will demonstrate the robust decision making capability of 
the hierarchical mixture-of-experts by  successfully identifying three 
successive  model  changes.  All experiments are performed on Mars 
Pathfinder two  way  Doppler data for the period from February 4, 
1997 to April 17, 1997. 
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INTRODUCTION 

Current  tracking of interplanetary  spacecraft relies heavily upon  navigator experi- 
ence and  ad  hoc techniques for the resolution of anomalous  residual  signatures pro- 
duced by the operational  tracking  filter.  These  anomalies  are  the  result of changes in 
the  dynamics  and measurement  system that cause the spacecraft  environment to de- 
viate from the operational  tracking model. Difficulties navigating recent missions, 
such as modeling the solar  radiation pressure (SRP) surface on Mars  Pathfinder 
(MPF) [l] and  the performance of Mars  Climate  Orbiter,  illustrate  the need for a 
systematic  method to resolve anomalous behavior in the tracking  solution. An au- 
tonomous/adaptive  navigation  architecture employing neural networks and genetic 
algorithms is being developed that will alert  the navigator when a change from op- 
timal to  suboptimal filtering  occurs and assist in modifying the filter parameters to 
resume  optimal  tracking.  This  architecture  consists of a near  real-time  autonomous 
monitoring  component and  an offline adaptive  component, as illustrated  in  Figure 1. 
The  autonomous  monitoring component  operates in parallel with the operational fil- 
ter, processing measurements as they become available. Operational filter residuals 
are compared to  the residuals from a set of hypothetical  filters  contained  in a hier- 
archical  mixture-of-experts  (HME) framework [2, 31. If a transition to suboptimal 
modeling is detected,  the  nature of the mismodeling responsible for the transition 
is identified. Once  identified, the  adaptive component then modifies the necessary 
model parameters in an offline process to bring the  operational filter back into op- 
timal  operation  and  the  autonomous  monitor  is reset to process new data.  Chaer 
and Bishop [4] proposed a genetic algorithm filter adaptation  that used the HME 
as the performance  index for parameter modification. However, this  approach was 
found to evaluate  performance  relative only to filters in the HME and Ely, Bishop, 
and  Crain [5] reformulate the  adaptive component to use an  absolute  performance 
index  based  upon a sample  statistic of filter residual  histories. 

All filters used in this work are  extended  Kalman  filters (EKFs) processing MPF 
two-way Doppler DSN data.  The  dynamic  and measurement  models used to de- 
fine each filter in the HME are variations of the operational model developed by 
the  MPF navigation team detailed in the post-mission navigation report [l]. The 
current  document is organized by a discussion of the  architecture  and  theory of the 
HME, a discussion of experimental  results, and a brief conclusion. Experiments 
were performed to test  the  autonomous monitor’s  ability to  detect  and identify: (1) 
small  unmodeled impulsive maneuvers, (2) changes in the  SRP model and impulsive 
maneuvers, and (3) unmodeled impulses and noise increases occurring  in the same 
data  span. 
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Figure 1: Autonomous/Adaptive  Navigation  Architecture 
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AUTONOMOUS MONITORING ARCHITECTURE 

Each filter in the HME  contains a unique measurement and  dynamics model which 
can  be  represented by the parameter vector a. Thus, a particular filter realiza- 
tion  may  be  thought of as an  expert  tracking  system for a specific region of the 
modeling parameter space. The HME model is composed of macromode identifica- 
tion  banks on the  top level  which are in turn composed of micromode  identification 
experts  (filters).  Macromode  environment changes include  unmodeled impulsive 
maneuvers, SRP model changes, and measurement  system noise changes. Filter 
realizations  representing  macromode changes in the spacecraft  environment are col- 
lected into  competing  banks on the  top level. Figure 2 illustrates  the general  HME 
configuration used in the experiments  presented this  study.  The HME  is separated 
into four filter banks. Three of the  banks represent  macromode changes in the 
spacecraft  environment and contain  multiple filters which model specific impulsive 
events, SRP model changes, and noise  level changes. The  fourth  bank  contains only 
the  operational filter as an experimental  control. 

The HME  is  regulated by two levels of single layer neural  networks known as 
gating  networks (GN) as indicated in Figure 2. The  bank level GNs assign weights 
to filters  within a single bank to indicate  the relative residual performance of each 
realization. The  top level GN assigns weights to each bank  according to  the collective 
residual  performance of the filters  within the  bank.  Optimal  tracking is assumed as 
long as the maximum value of the  top level gating vector g k  at the  time, t k ,  of a 
measurement zk is associated  with the control  bank (i.e. g3,k is the maximum element 
of g k ) .  A shift to suboptimal tracking is indicated when the maximum element of g k  
is associated  with  one of the  banks representing an environment change macromode. 
Such a shift could be  the results of a discrete  event, as in the case of a thruster misfire, 
or a continuous  or  sustained  environment  change, as in the case of a steady change  in 
shading of surfaces exposed to SRP. From a practical standpoint, a thruster misfire 
might only  require a few hours  worth of tracking to identify it, while a subtle change 
in SRP effects might take several days  or weeks of measurement data  to identify the 
change. Identification  is accomplished by inspection of the macromode  consistently 
given the highest top level gating weight. Once the environment  change  macromode 
has been identified, the adaptive  component then  operates  in  an offline mode to 
adjust  the  parameter  set via a genetic  algorithm. Finally, the operational filter is 
updated  and  the  autonomous monitoring process resumes with  the  adapted  optimal 
operational filter [5 ] .  
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THE HIERARCHICAL MIXTURE OF EXPERTS 

The  operation of the HME model regulated by multilevel GNs is based  upon max- 
imizing the probability  density of the  current  input  measurement, Z k ,  as approxi- 
mated by a weighted combination of the conditional  probabilities of each of the L 
macromodes  in the HME 

f ( Z k  I z k - 1 )  = xf=1 f ( Z k  I Ai, z k - l ) p ( A i  I z k - 1 )  

= xf=l f ( Z k  I Ai, Z k - l ) g i , k  
(1) 

where Ai is the  set of all filter realizations in the ith macromode, 

A i  = { a j i  I O  < j 5 Ki,O < i 5 L } ,  (2) 

Ki is the  number of filters in the ith bank,  and Z k - 1  represents the  set of all previous 
measurements. The conditional  probability of the ith macromode is f ( z k  1 Ai,  z k - 1 )  

and P ( A i  I z k - 1 )  is the a priori  probability that  the ith macromode models the  input 
generating  environment. The  top level GN approximates the a priori probability 
using the gating weight g+.  

The conditional  probability of the ith macromode  is given  by 

f ( z k  I A i ,   z k - 1 )  = x$1 f ( z k  I a j i ,  Z k - l ) p ( a j i  1 z k - 1 )  
(3) = c j l l   f ( Z k  I aji, z k - l ) g j i , k  

where f ( z k  I aji, z k - 1 )  is the conditional  probability of the j i th  filter (defined by a j i )  

and P ( a j i  1 Z k - 1 )  is the a priori  probability  among filters in the ith bank  that  the j t h  
filter models the  input  generating environment. The  bank level GN approximates 
this a priori  probability  in the gating weight g j i , k .  Assuming a Gaussian  distribution 
on the measurement  residuals of each filter, the probability  distribution of the j i th  
filter is given by 

where r j i , k  is the prefit measurement residual and w j i , k  is the innovations covariance 
of the j i th  filter at time t k .  The prefit measurement  residual is given by 

r j i , k  = Zk - h($!T)' p , k ,  " j i )  ( 5 )  

where h($j<;; aji)  is the measurement  computed from the  Kalman filter model eval- 
uated at the current  state  estimate 53;;;. The innovations covariance is a function 
of the  state error covariance, pi<;, the measurement  mapping matrix, H j i , k ,  and 
the measurement noise covariance, g&, 
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The prefit residual, the innovations covariance, and  the  measurement noise covari- 
ance  are all  scalar values in this  implementation  because the filter  is processing 
scalar Doppler observables. 

The likelihood function of the hierarchy may therefore be expressed as a function 
of the individual filter conditional  probabilities and  the  top  and  bank level gating 
weights ( a  priori  probabilities): 

Note that explicit dependence on previous information, & - I ,  will  now be implicitly 
assumed to simplify the  notation. 

The  gating weight u priori  approximations  are  calculated by transforming  the 
synaptic weights of the  top  and  bank level GN neurons through  the softmua: oper- 
ator [6, 71. The  gating weight of the ith output cell of the top-level GN is defined 
using softmax as a function of the  top level GN synaptic weights 

where ai is the  top level synaptic weight  for each bank  associated  neuron [8, 91. The 
gating weight assigned to  the j t h  filter within the ith filter bank is  similarly given by 

The  softmax function 
preserves rank  order  and 

serves to provide a differentiable activation  function that 
generalizes a winner-takes-all paradigm by exponentially 

separating  gating weights. As an  illustrative  example,  consider the  synaptic  and 
gating weights in  Table 1. Rank  order  is preserved as the  synaptic weights of the 
banks  map  into  the  same  magnitude  order in the  gating weights. The winner-takes- 
all paradigm  is observed when the relative gating weight magnitudes  within  the  rank 
order  are shifted to  favor the  bank  with  the largest synaptic weight. For example, 
the 50% increase  in synaptic weight from bank  2 to bank 3 translates  into a marked 
271% increase in gating weight. 

3.0 0.7020 
Sum 3.0 1.0 I 

Table 1: Softmax  Illustration 
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The  gating weights are renormalized with each adaptation of the  synaptic weights, 
which occurs when a measurement  is processed by the Kalman  filters, and have the 
following properties 

L Ki 

i=l j=1 

The  gating weights may therefore  be  reasonably  interpreted as the approximation to 
the conditional a priori  probabilities [lo] that each filter or  bank of filters,  depending 
on the level in the hierarchy, models the spacecraft  dynamics and measurement 
environment  correctly. 

Adapting  the  synaptic weights (and hence modifying the  gating weights) of the 
HME to maximize Eq. 7 is equivalent to adapting  the  synaptic weights to maximize 
the log-likelihood function 

= I n f ( Z k ) ,  (12) 
which proves easier to manipulate when evaluating a gradient  with  respect to  the 
synaptic weights. 

Substitution of the g’s into  Eq. 12 gives the log-likelihood in terms of the filter 
products  and  the  gating weight vectors. The sensitivity of the log-likelihood to  the 
synaptic weights is 

at the  top level and 

at the bank level. The h’s are defined as 

for the  top level and as 

for the j i th filter on the  bank level. Because of their  dependence  on  filter products, 
the h’s may  be  thought of as a posteriori probabilities of each filter or  bank. It 
is through  the a posteriori probabilities that  the filter performances influence the 
GN learning process. This a posteriori probabilistic interpretation of filter outputs 
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has been used in other  adaptive  Kalman filter applications  with  varying degrees of 
success [11, 121. 

The GN updates  the  synaptic weights ai,k and aji ,k  after the  experts process z k  by 
the grad.rent\\ascent procedure which seeks to maximize Eq. 12  [8]. The  adaptation 
of the  synaptic weights is 

and 

where is a learning rate  parameter  that is  not generally the  same for the  top 
and  bank level gating networks. The effective result of this learning  scheme  is that 
the gating weights track the a posteriori probabilities which are  functions of filter 
residual and innovations covariance magnitudes. By adapting  the  synaptic weights 
to maximize Eq. 12, the  best performing filters will generally be given a weight close 
to unity by the  bank level GN. Similarly, the  best performing  bank will be given a 
weight close to unity by the  top level GN; however, the presence of sufficiently poor 
performing  filters  in a bank  containing the  optimal filter may  cause that bank to not 
receive the highest top-level gating weight. Note  also that  the bank level learning 
rule  in  Eq. 18 scales the  update  to  the  synaptic weight  by the h value for that bank. 
Because of this scaling,  internal  learning progresses at a slower rate for filter banks 
that  are assigned low top level gating weights. 

EXPERIMENTAL RESULTS 

The  experimental  application of the autonomous  monitoring  component  is the  MPF 
cruise  segment  beginning  after TCM 2 on February 4, 1997 and  ending April  17, 
1997. Non-gravitational  accelerations, SRP,  and measurement noise have been iden- 
tified as three of the most significant sources of uncertainty  during MPF cruise [13]. 
Chaer  and Bishop [2] were able to successfully identify changes  in process noise 
statistics  related to these  error  sources using an  approximate  dynamic model linear 
Kalman filter and  simulated  MPF  data.  Their  results  indicated  that  an HME im- 
plementation using high fidelity filters processing real data might  be  able to identify 
deterministic changes in  these  error sources. Therefore, the goal of the following 
experiments  is to determine if a general HME configuration can  be used to identify 
(1) non-gravitational  accelerations  in the form of unmodeled  impulsive  maneuvers, 
(2) SRP environment  changes, and (3) unmodeled impulses and measurement noise 
statistics.  The  top level gating network must clearly assign weight to  the correct 
macromode  identification  bank in the event of a spacecraft  environment change. 
Also, the HME  must be  able to  avoid false identification  by giving the control filter 
bank the highest weight in the absence of environment changes. An initial  learning 
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period  is  expected as all  filters and  banks  are  initially weighted equally in the HME. 
The learning rate for all GNs is  set to 10 in the following experiments  and  all  filters 
are configured with the operational  parameter  realization defined in Ref. [l] unless 
otherwise  noted. 

EXPERIMENT  ONE: Impulsive Events 

To identify unmodeled  impulses, the HME must  contain a specific bank of filters that 
will accommodate  an unmodeled velocity change better  than  the  operational filter 
in the control  bank.  Bank 0 in the HME configuration of Table  2  contains filters 
with impulsive maneuver filter states spaced evenly in time for the Doppler data 
span  under  consideration.  These states  are corrections to zero magnitude impulses 
applied at these  times  and  should allow state space to accommodate unmodeled 
velocity changes by absorbing residual signal through  the  Kalman gain. The small 
MPF  trajectory  maneuver, approximately  0.7  mm/sec, on March 25, 1997 will be 
used as the impulse to be identified in this experiment. This maneuver  magnitude 
is just above the 0.18 mm/sec noise  level modeled in the  operational filter Doppler 
measurements [l] and  has been omitted from the model of all filters. 

The filters  in  bank 1 use the  MPF navigation team  SRP solutions  2 and 4 as 
detectors for SRP change and  the  operational Doppler noise value of 0.01 Hz (0.18 
mm/sec) [l]. The  optimal  SRP model is indicated as “Ely” and is a model tuned 
by the genetic  algorithm in the adaptive  component of navigation  architecture [5]. 
Filters  in  bank  2 model changes in the Doppler measurement noise but  are otherwise 
optimal.  Filter  (0,3) is the operational filter and is optimal  other  than  the absence 
of the March 25 impulse. 

Filter Impulse SRP Model R 
Number 

0,O Feb.4 [O,O,O] ElY 0.01 
1,0 Feb.22 [O,O,O] ElY 0.01 
2,O Mar.12 [O,O,O] ElY 0.01 
3,O Mar.30 [O,O,O] ElY 0.01 
0,1 - MPF 2  0.01 

171 - MPF 4 0.01 

072 ElY 0.003 
172 ElY 0.03 
272 ElY 0.09 
073 ElY 0.01 

- 

- 
- 

- 

Table 2: Impulsive Event  Experiment HME Configuration 

The  top level gating weights from this experiment are provided in Figure 3 where 
the times of the unmodeled impulse and  the  bank 0 test impulse states  are indicated 
by vertical lines. The  gating weights are equally distributed between the impulse and 

10 



control  banks for the first 10 days of data.  This result is to  be expected as three of 
the filters  in  bank 0 contain the same  dynamic model as the operational filter over the 
first quarter of the  data  span. However, when the February 22 test impulse  in filter 
(1,O) comes and goes without  an  impulse  occurring, weight is reassigned from the 
impulse test  bank to  the control  bank. The  autonomous  monitor passes an  important 
test at this point by avoiding a false detection of a macromode  change. A similar 
effect is observed on  March 12 to a smaller extent.  The unmodeled  impulse  occurs 
in the middle of the  data pass on day 49 but  does  not manifest a significant enough 
change in the  data for identification  until the next  pass when the impulse  bank is 
correctly assigned the  majority of the  gating weight. A navigator  examining this 
gating  history would be justified in adapting  the  operational filter to  accommodate 
an impulse between March 12 and March 27. The  bank level gating weights in 
Figure 3 reflect a similar behavior as filter (2,O) is assigned the most weight in  bank 
0 on the pass after  the unmodeled impulse. The SRP alternative models  in  bank 1 
are weighted relatively the  same within  their  bank. The small noise filter (0,2) is 
selected throughout  the  data  span  within  bank 2. However, recall from Eq. 18 that 
bank level learning is scaled by the  top level a posteriori weight, h i , k ,  associated 
with  each  bank. Since the gradient  learning  rule  in  Eq. 17 indicates that  the gating 
weights track the a posteriori weights and  the noise bank  gating weight goes to zero 
in Figure 3, it  can  be concluded that relatively no  internal  learning  occurs  in  bank 
2 because of its poor collective top level performance. 
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EXPERIMENT TWO: SRP Model Changes 

In  order to investigate the ability of the autonomous  component to identify a con- 
tinuous  change  in the  SRP model, the HME was configured as detailed  in  Table 3. 
The basic structure is the same as in the impulsive event detection  with the excep- 
tion that all of the filters  not involved with SRP change identification  utilize the 
MPF navigation team  SRP model 4. The  assumption of this scenario  is that  MPF 
SRP model 4 is  incorrectly believed to be  the  optimal model and is therefore used 
in the operational filter and most other filters. The two filters in the  SRP change 
bank 1 use the “Ely”  genetic  algorithm tuned  SRP model and  the  MPF navigation 
team model 2 to provide alternative  SRP dynamics to  the operational model. The 
Doppler noise values are configured in the same  manner as before with  bank 2 filters 
modeling changes  in the measurement noise. To examine the degree to which the 
top level GN can switch between macromodes, the small  March 25 impulse is again 
omitted from all  filters. 

Filter  Impulse SRP Model R 
Number 

0,O Feb.4 [O,O,O] MPF 4 0.01 
1,0 Feb.22 [O,O,O] MPF 4  0.01 
2,O Mar.12 [O,O,O] MPF 4  0.01 
3,O Mar.30 [O,O,O] MPF 4 0.01 
071 - MPF 2  0.01 

111 ElY 0.01 
072 - MPF 4 0.003 

172 MPF 4 0.03 
2,2 MPF 4 0.09 

- 

- 

- 

073 - MPF 4 0.01 

Table 3: SRP Model Change  Experiment  HME  Configuration 

After the initial 10 day learning  period, the  top level gating weights are defini- 
tively assigned to  the  SRP model change  bank as illustrated  in  Figure 5. Examining 
the  bank level weights in  Figure 6, it  can  be seen that  the optimal “Ely” SRP model 
in expert  (0,l) receives the majority of weight from the beginning of the  data span 
but also  gains a definitive weighting majority  after  day  ten.  The  top level SRP 
bank  maintains the maximum weighting through  the  test impulses on February 12 
and March 22 but  the impulse bank is selected beginning on the  data pass  after  the 
unmodeled  impulse.  Therefore, in this experiment the  autonomous monitor is able 
to distinguish between a continuous and a discrete  environment  change  within the 
same  data  set. 
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EXPERIMENT THREE: Noise Change and Impulsive Event Detection 

The impulsive event  detection performed in the first experiment is now conducted 
with the addition of the Gaussian noise signal  plotted  in  Figure 7. The addition of 
this noise from day 5 to  day 15 gives the measurements an equivalent total noise 
value of 0.04 Hz for this  time period. The HME  is configured exactly the same as 
in the impulse  detection  experiment as illustrated in Table 4. 

0 03 
Noise Added lo MPF %Way Dcppler Measurements 

. .  

" " .  

10 x1 3u 40 50 eo 70 
Day afler 4-FEE1997 3 1 0 0 UTC 

Figure 7:  Noise Added to  MPF Doppler Data 

Filter  Impulse SRP Model R 
Number 

0,O Feb.4 [O,O,O] ElY 0.01 
1,0 Feb.22 [O,O,O] ElY 0.01 
2,O Mar.12 [O,O,O] ElY 0.01 
3,O Mar.30 [O,O,O] ElY 0.01 
0,1 - MPF 2 0.01 
1,1 - MPF 4 0.01 

072 
172 

- ElY 0.003 
ElY 0.03 - 

2.2 - Elv 0.09 
0,3 - E 6  0.01 

Table 4: Impulse and Noise Experiment  HME  Configuration 

The  top level and  bank level weights for the noise and impulse  identification 
experiment are provided in  Figures 8 and 9. The  top level weights exhibit a brief 
initial  learning  period before the noise bank moves to almost unity weighting very 
close to  the beginning of the increased noise segment.  On the  bank level, filter (1,2) 
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with a noise statistic of 0.03 Hz moves to unity weighting over the 0.003 and 0.09 Hz 
filters. The increased noise segment ends on day 15 but  the noise bank  maintains 
unity  top level weight until  the learning  period starting  near  day 30. It is not clear 
whether the  extended weighting of the noise bank is a property of gating network 
or the EKFs or both. However, during  the learning  period the control and impulse 
banks  are weighted almost equally. Once the March 12 test impulse in filter (2,O) 
passes near day 35, the control  bank is definitively selected as the best  performer. 
When the unmodeled  impulse  occurs on March 25, a second learning  period  occurs 
where the noise bank is given the highest weight  for two data passes. After  March 
30, the impulsive filter is given unity weighting. The soft decision capability of the 
multi-level HME is demonstrated  in  this  switch  because the March 12 test impulse 
filter is selected after  the unmodeled impulse, only to give  way to  the March 30 test 
impulse filter on  the  bank level, but  the  top level decision is  nonetheless  correct. 
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SUMMARY AND CONCLUSIONS 

The  autonomous  monitoring algorithm successfully detected  and identified unmod- 
eled macromode  environment changes in the  MPF tracking  environment  within one 
or  two data passes. Changes were identified correctly  in all three  experiments  and 
false identifications  in the absence of environment changes were not significantly 
present.  Learning  periods were observed at the beginning of each experiment when 
no filter bank was clearly selected or the incorrect filter bank was temporarily se- 
lected by the  top level gating network. The multi-mode MPF environment changes 
in the  third experiment  created two distinct  learning  periods  within the  data  span 
after  each  mode  change  and  incorrectly  maintained noise macromode selection for 
approximately 15 days  after the increased noise period elapsed. Some learning  is 
required for the  top level gating network to make robust decisions, otherwise a single 
measurement could cause an  instantaneous reassignment of gating weight and lead 
to false detection  or  incorrect identification of environment changes. The learning 
periods at the beginning of the  data span might be  reduced if the  gating networks 
were initialized  with synaptic weights favoring the  operational filter in the control 
bank  instead of equal  initial weighting as in these  experiments. Such a biased initial 
weighting scheme has  intuitive  merit since the operational filter is believed to be 
the  best model of the spacecraft  environment when the first measurement is pro- 
cessed. However, since the  adaptation of the  synaptic weights is sensitive to their 
magnitude  during  application of the gradient  learning  rule,  care  must be  taken to 
not overlook changes that occur shortly  after  the  data  span begins. As always, the 
balance between response time  and  robust decision making must  be observed. 

Further  experimentation is required to determine the effectiveness of the impulse 
identification  configuration used in bank 0. In particular, the temporal  spacing of 
test impulse  filter states required to adequately  determine the approximate  time of 
unmodeled  discrete velocity changes in an  operational  setting  has yet to  be deter- 
mined. It is possible that  the  adaptation of the  operational filter to account for 
unmodeled  impulses  might  require the genetic algorithm to include event time as 
one of its  parameters.  The work  by Gholson [ll] with a single linear  Kalman filter 
modeling multiple unknown accelerations  inspires the  creation of a queue of impulse 
detection  EKFs in  bank 0. In the queued  approach, a manageable  number of filters 
populate  bank 0 with a reasonable  temporal test impulse spacing. If bank 0 does 
not  accrue  top level  weight within a certain  time  interval  after the first test impulse 
in the  queue  has  occurred,  then  that filter is removed from the bank  and a new filter 
with  an upcoming test impulse replaces it at the  end of the queue. The multi-level 
structure of the HME would be useful in this approach since bank level probabili- 
ties would be reassigned equally when the queue changes, but  the  top level  weight 
assigned to  the impulse  detection  bank would remain the same. This  approach  is 
appealing as it  limits  the  number of active filters required for small  temporal  spacing 
of test impulses  in  bank 0. 

Several operational  questions  must  be  addressed before the autonomous mon- 
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itoring  and  the offline adaptive  components  can  be fully integrated. Given that 
periods of learning  can  occur even with  acceptable  top level decision making, two 
distinct  problems  arise. First, a method of distinguishing ongoing learning from 
environment  changes beyond the scope of those modeled in the HME configura- 
tion of filters  should  be developed. It is possible that  the HME  can diverge if an 
change  occurs  in which no filter or  bank  correctly  models the spacecraft environ- 
ment.  Large  residuals  in  all  filters  can  cause a numerical underflow problem  in the a 
posteriori probability  calculations.  A  time  limit  or data  quantity limit  on  learning 
along  with  minimum  residual  magnitude  monitoring  should  adequately  address this 
issue. Second, a method of determining when adaptation should take place should 
be developed. The  operational filter should  be adapted by the genetic  algorithm 
only  after the  top level weights have maintained a threshold value for a specified 
number of data points. This would avoid adaptation in  response to  transient or 
learning  period weighting regimes. 
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